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Introduction and Literature Review 

 Soil liquefaction is a secondary hazard during earthquakes where an applied load causes a 

block of soil to act as a liquid instead of a solid for a short period of time. This can cause extreme 

damage to overlying infrastructure, such as buildings or roads. Several models have been created 

to constrain the impact of different potential explanatory variables on the occurrence of 

liquefaction (Zhu et al. 2015, 2017, Rashidian and Baise, 2020). However, little work has been 

completed to directly model the impact of different potential explanatory variables on 

liquefaction damage costs. In this paper, a multiple linear regression loss model is presented 

based on liquefaction probability, the components which go into the liquefaction probability 

model, population density, and several other potential explanatory variables. 

A global model to evaluate liquefaction spatial extent developed by Zhu et al. (2017) and 

implemented by the United States Geological Survey (USGS) identified and evaluated the 

impact of several globally available parameters likely to cause liquefaction: water table depth 

(Fan et al., 2013), annual mean precipitation (Hijmans and others, 2005), distance to nearest 

waterbody (HydroSHEDS and OceanColor), slope-based Vs30 (Wald and Allen 2007). The model 

also utilizes two parameters unique to each earthquake event: peak ground velocity (ShakeMap, 

Worden and Wald, 2016), and peak ground acceleration (ShakeMap). These two parameters are 

calculated using data from seismic stations during an event and represent quantitative measures 

of ground motion in response to the earthquake itself. The calculated values for these two 

variables vary spatially. This model’s output for each cell, liquefaction spatial extent (LSE), is 
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interpreted as a probability of that cell liquefying. However, very little work has established 

direct relationships between explanatory variables and liquefaction damage costs. 

 In a current thesis project, a database has been developed of liquefaction damage costs 

for damaged infrastructure and their locations in all US earthquake events from 1964 – 2019 

(Chansky and Baise, in progress). 173 of the 295 damage descriptors have exact coordinates 

associated with them, accurate to within 100 meters. Using these coordinates, values were 

extracted from rasters of 16 potential explanatory variables, including the six used to produce the 

Zhu et al. (2017) output and the output itself (LSE). Some variables can be extracted from 

national or global datasets while others such as Magnitude, peak ground acceleration (PGA), 

peak ground velocity (PGV), and LSE are unique to each event. Some variables unique to each 

event such as PGA, PGV, and LSE, also vary spatially, meaning different values can be found 

for different locations in the same event. 

 Econometrically, the null hypothesis for this project was that no variable has any 

significant impact on cost. The alternative hypothesis was that one or more variables are 

statistically significant impact. For research purposes, the null hypothesis was that some 

variables are expected to correlate with damage costs and evidence found would offer support for 

or against keeping each variable. Every variable was tested for individual and group significance. 

As LSE is the best predictor of general liquefaction, it was expected to be significant and explain 

much of the variance in cost. Population density is the only indicator obtained as a proxy for 

infrastructure, so it was also expected to explain much of the cost variance. Most of the 

remaining explanatory variables were used to calculate LSE, so they are not expected to correlate 

better with liquefaction damages than LSE itself. LSE, PGV, and PGA are unique shaking 

parameters to each earthquake, and most liquefaction damage occurred in events with high levels 
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of shaking, so it can be expected that these three parameters impact cost. While Magnitude is 

also unique to every event, its values are calculated on an event-wide basis and is thus less 

indicative of approximated applied load at each location than PGA or PGV. 

High multicollinearity was also expected for some of the variables used to construct LSE, 

so some variables were expected to be eliminated during the regressions. 

 
Data description 

 
 Cost for each damage description is provided in 2018 US Dollars from the database 

constructed in Chansky and Baise (in progress). Costs for every instance of damage were either 

found in literature review for each individual earthquake or estimated using details in 

reconnaissance reports and strategies detailed in Chansky and Baise (in progress) developed 

primarily on HAZUS-MH 2.1 estimation techniques. For instances of cost estimation found in 

literature review for historical earthquakes, costs were adjusted to 2018 US Dollars using the US 

consumer price index (CPI). Costs have also been adjusted using the area modification factor 

(AMF) found in Moselle (2019) of the city or state in which the damage occurred. This accounts 

for discrepancies in labor and material costs between different regions of the country. 

Population density (Pop_sqmi) was calculated from a polygon shapefile in the Tufts Data 

Lab’s M Drive representing census count of population per square mile in every block group 

across the US. This polygon was converted to a raster from which cell values could be extracted 

at every location (Census Bureau, 2018). 

 Soil thickness (Soil_thickness) is calculated in each cell using an average of combined 

soil, regolith, and sedimentary rock deposit thickness, in meters from the surface to solid bedrock 

(Pelletier et al. 2016). Bedrock is unable to liquefy, so thicker soil layers allow the potential for 

more liquefaction to occur than thinner layers. 
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 The remaining variables can be categorized into three components of soil liquefaction: 

applied load, soil density, and saturation. 

 Peak ground acceleration (PGA) and peak ground velocity (PGV) are shaking parameters 

unique to each earthquake, estimated spatially by algorithms at the United States Geological 

Survey (USGS) and represent applied load. These parameters are published online for each 

event and were downloaded individually for use in this project. Liquefaction spatial extent (LSE) 

indicates the probability that each cell will liquefy. This is also unique to each earthquake, and is 

calculated in an algorithm using PGA, PGV, and several global parameters. LSE is thus expected 

to have some degree of collinearity with the other layers, which was checked during the 

empirical analysis for anything problematic. LSE was also downloaded from the USGS website 

individually for each event through the Shakemap archives. As discussed earlier, Magnitude is 

another variable which can be considered for applied load. However, moment magnitude used in 

this project is calculated as the total energy released by an event. It is not indicative of shaking 

experienced at any individual location. Thus, PGA, PGV, and LSE are expected to correlate 

better with cost than Magnitude.  

 Shear wave velocity (Vs30), elevation (Elev), topographic slope (slope), topographic 

position index (TPI), terrain roughness index (TRI) can all be indicative of soil density. Vs30 is 

the average velocity of a type of seismic wave known as a shear wave from the Earth’s surface to 

a depth of 30 meters. Wald and Allen established a global model for Vs30 from which all values 

where extracted. Elevation (Elev) represents the cell’s average elevation above sea level, 

measured in meters (Danielson and Gesch, 2011. The rasters representing slope (in degrees), 

terrain ruggedness index (TRI) (dimensionless), and topographic position index (TPI) 

(dimensionless) were all calculated from the elevation raster.  
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 Aridity Index (AI), precipitation (Precip), compound topographic index (CTI), water 

table depth (wtd), and distance to the nearest water body (DistWater) are different indicators of 

saturation levels. AI represents the ratio between precipitation and water needs of vegetation. 

High AI values correspond to wet, humid regions while low AI values correspond to dry regions 

that are getting below their vegetation’s ideal amounts of water. Wet regions are more 

susceptible to liquefaction, so high AI values (dimensionless) are expected to correspond 

positively with higher liquefaction damage costs. Global AI raster was downloaded from the 

Global Aridity Index and Potential Evapo-Transpiration Climate Database v2 (Trabucco and 

Zomer, 2018). Precip represents annual mean precipitation for an area and higher values indicate 

higher saturation, so Precip was expected to correlate positively with cost. CTI is a function of 

both slope and upstream catchment area compared to upstream width. This is meant to represent 

a wetness index describing how much potential a cell has to receive runoff from upstream 

regions. Cells with high CTI values (dimensionless) represent areas receiving a lot of runoff, 

which are more likely to be wet. These cells are more likely to have damage due to liquefaction, 

so we expect a positive association with damage costs (Verdin, 2017). Low values of DistWater 

indicate a location is close to a water body while high values of DistWater indicate the location 

is further away, so this variable was expected to negatively correlate with saturation and thus 

negatively correlate with cost. 

Lastly, a dummy variable was added into the regression, for which a 1 was assigned to all 

locations with damage costs and a 0 was assigned to all locations without damage costs. This 

variable provides a way to separate observations of damage against those without damage. 

Summary statistics for values extracted for each explanatory variable can be found in table 1. 
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Another point of consideration when collecting data was our effort to be wary of bias 

towards locations with liquefaction damage. To account for potential bias towards locations with 

liquefaction damage, variable values from locations of non-liquefaction-damage (NLD) were 

included in some empirical regressions.  

NLD points used in the regression were selected randomly from a mesh of points spaced 

evenly apart using geographic information system (GIS) software. In 12 events with liquefaction 

damages, meshes were constructed of approximately XX miles around each point of liquefaction 

damage with NLD points spaced 1 km apart. In five events of no liquefaction, meshes were 

constructed of approximately 40 km by 40 km with NLD points spaced 1km apart.   which had 

extracted values randomly from areas of potential liquefaction which did not receive any 

liquefaction damage.  

After eliminating points in the meshes which existed over water bodies, NLD points were 

randomly selected from the list of over 20,000 NLD points. A ratio was used of three NLD 

points to one liquefaction damage point as areas of no liquefaction damage are much more 

common in reconnaissance reports than areas of liquefaction. 

 
  

Empirical part 

 After completing scatter plots showing relationships between cost and all independent 

variabels (figure 1), it was clear that there would not be linear relationships between any of the 

potential explanatory variables and the explained variable, cost. Scatter plots showing 

relationships between the natural log of cost and all independent variables (figure 2) appeared, at 

least visually, to allow some relationships to be established and significance of some coefficients 

to be proved. 
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 Three regressions were completed using different combinations of variables with the 

intent of finding a combination which maximized the r-squared and adjusted r-squared. Most 

rasters in this study did not provide values over water bodies because their variables related to 

soil properties. The pixilation of low-resolution rasters near coastlines results in some land areas 

near water bodies where the rasters do not have real values associated with them. Extractions of 

these values for liquefaction damages near coastlines resulted in missing values, which cannot be 

used in a regression.  

For the first regression, only location points with damage were considered. Furthermore, 

only variables with values at almost all locations were considered. This led to 152 observation 

points under consideration of seven variables; LSE, Pop_sqmi, AI, Precip, Soil_thickness, Vs30, 

and DistWater.  

A regression was conducted normally for lnCost. Typically, AI and Precip are expected 

to have high multicollinearity, but the vif command did not reveal high collinearity for any 

variables for these observations. 

AI, Precip, and Vs30 were found to be individually significant, while the other four 

variables were not. Several combinations of F test were conducted to observe if any combination 

of the other four variables were found to be jointly significant. None of them were found to be 

jointly significant and inclusion of any combination decreased the adjusted R2 value. The results 

of the regression of the three significant variables can be found in column 1 of table 2. 

 For the second and third regressions, all 16 variables were considered. However, several 

variables did not have values at many locations, so only 340 total point locations could be 

considered for these, of which 68 are damage observations. The second regression analyzed the 

68 points of liquefaction damage on as many variables as possible while the third regression 
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analyzed the 68 damage observations and 272 NLD points for a total of 340. The fourth 

regression analyzed a reduced number of variables to try maximizing the number of observations 

which could be included of both damage and no damage. 

 In the second regression, Precip and AI were found to have very high multicollinearity. 

Precip was not individually significant while AI was, so Precipitation was removed. TRI and 

slope were also found to have problematic collinearity. TRI was slightly less significant than 

slope but is more complex than slope, so TRI was retained in the model. An F-test was conducted 

to test joint significance of slope and Precip, which concluded that the two variables were not 

jointly significant in this regression. 

 In the regression without slope and Precip, the following variables were not found to be 

individually significant: TPI, TRI, LSE, and Pop_sqmi. F-tests for all combinations of these, 

including slope and Precip yieled results which were not jointly significant. Removing most of 

these did not impact R-squared or adjusted R-squared much. However, removing Pop_sqmi 

reduced both R-squared and adjusted R-squared by more than 0.05, so Pop_sqmi was retained in 

the regression. Coefficients for remaining variables can be found in column 2 of table 2. 

The third regression was conducted normally for lnCost. Through the vif command, AI 

and Precip were found to have high multicollinearity. Both variables were found to be 

individually insignificant. AI had a slightly lower p-value and is a more complex variable 

meaning it was expected to be slightly more indicative of real-world conditions, so Precip was 

eliminated. TRI and slope were also found to have high multicollinearity and individually 

insignificant. TRI was more significant and is a more complex variable so is expected to be 

slightly more indicative of real-world conditions, so slope was eliminated. 
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Nine variables were found to be individually significant, while TPI, TRI, Magnitude, 

Elev, and AI were not. Through several F-test combinations, all four variables were found to not 

be jointly significant. Inclusion of any combination was also found to decrease R2 and adjusted 

R2. For these reasons, all four variables were eliminated from the regression. Results of the 

regression of the nine individually significant variables can be found in column 3 of table 2. 

For the fourth and final regression, a smaller number of variables was considered with 

the goal of maximizing the number of points which could be used in the analysis. LSE, PGV, 

DistWater, Vs30, AI, and Soil_thickness were considered for 618 points, of which 144 

observations represent locations of damage.  

No multicollinearity was found using the vif command. Soil_thickness was the only 

variable found to not be individually significant. However, its removal lowered the R2 by 

approximately 0.015, corresponding to 1.5% more variation explained in lnCost by keeping it in 

the regression. Soil_thickness was determined important to the regression as it reduces bias in 

other variables, shown in the coefficient increase and subsequent p-value decrease of LSE and AI 

with its inclusion, and its greater explanation of variance in lnCost. Results of this regression can 

be found in column 4 of table 2. 

 

Limitations 

 It is expected that some omitted variables could improve the regression. Authors behind 

Chansky and Baise (in progress) are also working on rasters representing density of different 

infrastructure, such as roads or buildings. It is likely that these variables alone or as an 

interaction term in combination with LSE will explain much of the variance associated with 

infrastructure damage costs. 
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 It is also possible that different interaction terms, quadratic terms, or log terms of 

variables could improve the regression. Due to time constraints, only linear terms were checked 

for each explanatory variable, but this could be easily improved in future analysis. 

 The dataset used for the regression is also impacted by sample selection bias. When 

identifying points with damage locations from reconnaissance reports, exact locations could not 

be determined for expensive, multi-site damages. For example, from the 1989 Loma Prieta 

reconnaissance report, it is said, “300 pipe breaks” were concluded as having occurred due 

liquefaction across the Marina District. Though this results in one of the more expensive damage 

points in the database, it does not have a precise location associated with it, so values for 

explanatory variables could not be extracted and this damage could not be included in the 

regression. These regressions are thus likely biased towards low-cost damages, which is 

problematic, as discussed in class. 

Another large issue with the current dataset is that the resolution for some rasters is 

coarse enough that areas near coasts and rivers are often all considered water. So if liquefaction 

damage occurs in a river or coastal area, their location is assigned a value of “NaN”. The 

simplest way these regressions could be improved is through ensuring that all rasters of 

explanatory variables exist in a high enough resolution where data can be extracted at every 

damage location. Alternatively, for locations of missing values near coastlines, data could be 

extracted on the raster at the location closest to where damage occurred. 

 Another way the regression could be improved is through obtaining additional potential 

explanatory variables to explain more of the variance in the natural log of damage costs. Some 

possibilities for other explanatory variables are road density, building density, or other 
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infrastructure variables which could be direct or proxy variables for infrastructure exposed to 

liquefaction. 

 
Summary and conclusion 

 
The preferred regression is the one explaining the highest variance in the natural log of 

cost while including NLD points. This is the third regression containing all variables and 340 

total points, 68 of which are observations with damage costs associated with them. While the 

second regression had a higher R-squared value, it is essential to sample some points without 

liquefaction damage. Additionally, the second regression does not consider LSE or Pop_sqmi as 

significant variables, when they were expected to be two drivers of damage. 

Based upon the results in the third regression, nine variables are found to be at least 

significant at the 0.10 level, including one which was significant at the 0.05 level and five which 

are significant at the 0.01 level. From this, it can be concluded that PGV, LSE, Soil_thickness, 

CTI, and water table depth all have very significant impacts on liquefaction damage costs and 

PGA has a significant impact. While PGA, PGV, and LSE are unique to each earthquake, the 

remaining three variables are not. Thus, areas with thick soil layers between the surface and 

bedrock, high CTI, and low water table depth can be considered more vulnerable to liquefaction 

infrastructure damage than other areas. The impact of PGA, PGV, and LSE on cost was expected 

based on discussion in the introduction. While less easily predictable, obtaining these shaking 

parameters soon after an earthquake occurs can indicate areas of potential liquefaction damage. 

Population density, expected to be one of the larger drivers of cost, was declared 

somewhat significant in the preferred regression and not significant in the other models. More 

accurate population density rasters are available and will likely improve those results in future 
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models. However, these rasters cannot be downloaded nationally and a fair amount of processing 

must be done to prepare the more detailed data, so it was not considered due to time constraints. 

The R2 for the preferred model, 0.256, is still quite low. This implies that all variables 

discussed only account for 25.6% of the variance in the natural logarithm of damage costs. 

Including some currently omitted variables will likely improve this result. 

The model could be improved by several methods discussed in the limitations section. It 

is the author’s opinion that at least some of these improvements should be made before any 

policy changes are made in response to these results. 
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Appendix 
 
Figure 1: Scatter plots of relationships between Cost and all other independent variables. 

 
 
 
Figure 2: Scatter plots of natural logarithm of cost versus all other variables in  linear format. 
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Table 1: summary statistics of Explained variables and  

Summary Statistics 
VarName Obs Mean SD Min Median Max 
Cost 688 177393.29 1.14e+06 0 0 1.81e+07 
lnCost 688 2.67 4.803 0 0 16.71405 
Magnitude 688 7.47 1.071 5.8 6.8 9.2 
PGA 688 28.33 12.720 5.27166 26.2604 88.8684 
PGV 688 29.66 17.372 5.58303 25.16845 102.269 
LSE 688 0.02 0.055 0 .0008953 .402934 
Pop_sqmi 597 1441.85 3320.733 .1 114.2 51016.7 
AI 656 10850.19 7717.624 227 11261 50052 
Precip 656 850.71 460.760 56 914.5 2264 
Soil_thickness 622 18.22 19.506 0 8 50 
Vs30 672 452.10 215.781 141.38 416.655 900 
DistWater 688 2.91 2.816 0 2 16.9706 
Elev 421 161.85 247.001 -22 67 1660 
CTI 414 919.48 296.776 477 854.5 2717 
TPI 421 -0.47 9.324 -46.125 -.125 53.125 
TRI 421 9.70 12.317 0 5.375 81.5 
slope 421 2.98 4.074 0 1.48898 28.1231 
wtd 420 21.97 26.699 0 11.8082 189.75 
Dummy_Damage 688 0.25 0.433 0 0 1 
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Table 2: Output for regressions including coefficients, standard errors, p-values, number of observations, and 
variance explained (R2). 

 (1) (2) (3) (4) 
 Damage Points Only Damage Points Only All Points Reduced Variables 
VARIABLES Reduced Variables All Variables All Variables Maximized Points 
     
lnCost     
     
     
Magnitude  4.155***   
  (1.168)   
  0.000768   
PGA  -0.0206 -0.0614**  
  (0.0411) (0.0259)  
  0.618 0.0183  
PGV  -0.0423 0.0813*** 0.0425*** 
  (0.0339) (0.0218) (0.0105) 
  0.217 0.000230 6.03e-05 
DistWater  -0.233 -0.159* -0.285*** 
  (0.247) (0.0836) (0.0670) 
  0.351 0.0573 2.50e-05 
Pop_sqmi  -2.88e-05 9.32e-05*  
  (6.41e-05) (4.97e-05)  
  0.655 0.0615  
AI 0.000271*** -0.000226  0.000112*** 
 (5.45e-05) (0.000139)  (2.57e-05) 
 1.73e-06 0.110  1.65e-05 
Soil_thickness  -0.0650** -0.0416*** -0.0155 
  (0.0264) (0.0154) (0.0129) 
  0.0171 0.00725 0.228 
Vs30 -0.00386*** -0.0153*** -0.00294* -0.00532*** 
 (0.00127) (0.00349) (0.00177) (0.00114) 
 0.00290 5.16e-05 0.0969 3.84e-06 
CTI  -0.00264*** 0.00345***  
  (0.000899) (0.000790)  
  0.00475 1.70e-05  
wtd  0.0542 -0.0253***  
  (0.0354) (0.00941)  
  0.131 0.00755  
Elev  0.00358   
  (0.00287)   
  0.217   
Precip -0.00387***    
 (0.000933)    
 5.53e-05    
LSE   21.67*** 12.29*** 
   (6.568) (4.388) 
   0.00108 0.00525 
Constant 12.20*** -5.311 0.747 3.243*** 
 (0.574) (7.881) (1.247) (0.799) 
 0 0.503 0.550 5.59e-05 
     
Observations 152 68 340 618 
R-squared 0.170 0.484 0.256 0.179 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Do File 
 
* Importing csv 
*insheet using out.csv, clear 
import delimited "/Users/Alex/Box/My_Work/Fall_2020/Econometrics/FinalProject/Data/ExportedValues_CSVs 
> /out4.csv", case(preserve)  
 
 
* Reading Stata (.dta) file 
*use BWGHT, clear 
 
describe 
summarize 
 
reg Cost Magnitude PGA PGV LSE Pop_sqmi AI Precip Soil_thickness Vs30 DC DR CTI TPI TRI wtd 
reg Cost Magnitude PGA PGV LSE Pop_sqmi AI Soil_thickness Vs30 DistWater CTI TPI TRI wtd PopExp 
reg Precip Vs30 wtd PGA PGV LSE DistWater Pop_sqmi AI Soil_thickness Dummy_Damage 
 
 
graph matrix Cost Magnitude PGA PGV LSE Pop_sqmi AI Precip Soil_thickness Vs30 DC DR CTI TPI TRI wtd 
 
* Damage points only, reduced variables 
reg lnCost LSE Pop_sqmi AI Precip Soil_thickness Vs30 DistWater if Dummy_Damage == 1 
vif 
test DistWater Soil_thickness LSE Pop_sqmi LSE 
test DistWater Soil_thickness 
test LSE Pop_sqmi 
reg lnCost LSE Pop_sqmi AI Precip Vs30 DistWater if Dummy_Damage == 1 
reg lnCost LSE Pop_sqmi AI Precip Soil_thickness Vs30 if Dummy_Damage == 1 
reg lnCost AI Precip Vs30 if Dummy_Damage == 1 
 
outreg2 using myreg2.doc, replace ctitle(Damage Points Only, Reduced Variables) stats(coef se pval) 
 
* ADDED THE FOLLOWING REGRESSION 
* Damage Points only, all variables 
reg lnCost Magnitude PGA PGV DistWater LSE Pop_sqmi AI Precip Soil_thickness Vs30  
CTI TPI TRI wtd slope Elev if Dummy_Damage==1 
vif 
test TRI Precip 
test Precip TRI TPI 
test Precip TRI TPI LSE Pop_sqmi 
test Precip TRI TPI LSE Pop_sqmi slope 
reg lnCost Magnitude PGA PGV DistWater AI Soil_thickness Vs30 wtd Elev 
CTI TPI wtd slope Elev if Dummy_Damage==1 
reg lnCost Magnitude PGA PGV DistWater Pop_sqmi AI Soil_thickness Vs30 CTI wtd Elev if 
Dummy_Damage==1 
* kept Pop_sqmi because removing it lowered adjusted R-squared by 0.06, goal was 
* to keep adjusted R-squared high 
outreg2 using myreg2.doc, append ctitle(Damage Points Only, All Variables) stats(coef se pval) 
 
* All points and all variables 
reg lnCost LSE Vs30 wtd PGA PGV DistWater Pop_sqmi Soil_thickness CTI 
reg lnCost Magnitude PGA PGV DistWater LSE Pop_sqmi AI Precip Soil_thickness Vs30 CTI TPI TRI wtd slope 
Elev 
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vif 
reg lnCost Magnitude PGA PGV DistWater LSE Pop_sqmi AI Soil_thickness Vs30 CTI TPI TRI wtd Elev 
vif 
test TPI TRI 
reg lnCost PGA PGV DistWater LSE Pop_sqmi Soil_thickness Vs30 CTI wtd Magnitude AI 
reg lnCost Magnitude PGA PGV DistWater LSE Pop_sqmi AI Soil_thickness Vs30 CTI TPI TRI wtd 
test TPI TRI Magnitude 
test TPI TRI Elev 
test TPI TRI Magnitude AI 
test Magnitude AI 
test Elev AI 
reg lnCost PGA PGV DistWater LSE Pop_sqmi Soil_thickness Vs30 CTI wtd 
 
outreg2 using myreg2.doc, append ctitle(All Points, All Variables) stats(coef se pval) 
 
* All points, reduced variables 
reg lnCost LSE PGV DistWater Vs30 AI Soil_thickness 
vif 
test Soil_thickness DistWater 
reg lnCost LSE PGV DistWater Vs30 AI 
reg lnCost LSE PGV DistWater Vs30 AI 
reg lnCost LSE PGV DistWater Vs30 AI Soil_thickness 
outreg2 using myreg2.doc, append ctitle(Reduced Variables, Increased Points) stats(coef se pval) 
 
sum2docx Cost lnCost Magnitude PGA PGV LSE Pop_sqmi AI Precip Soil_thickness Vs30 DistWater Elev CTI 
TPI TRI slope wtd Dummy_Damage using Alex, replace stats(N mean(%9.2f) sd min(%9.0g) median(%9.0g) 
max(%9.0g)) 
 
 
* Creating scatter plot example 
scatter lnCost TRI 


