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The goal of this project was to quantify the uncertainty associated with fragility functions constructed 

for an MS thesis project. In the thesis project, event-level fragility functions were constructed to estimate 

probabilities of exceeding cost-based damage thresholds for earthquake liquefaction loss. This project also 

sampled input data, quantified uncertainty, and created confidence intervals along the fragility functions 

using a Monte Carlo simulation. 

 

Fragility functions are a method of fitting lognormal cumulative distribution function (CDF) curves to 

a dataset by using maximum likelihood estimation (MLE) on the function’s parameters. This project uses 

the empirical bounding-failure excitation method discussed in Porter (2020). This allows failure data based 

on excitation measures to provide an estimate of probability failure at every excitation level. In this case, 

the excitation measure is defined as spatial expectation of liquefaction in an event in square kilometers. 

These values were derived from Zhu et al., 2017, a former project in our research group, which produces 

an estimated percent of each cell (LSE) across a map expected to liquefy. The event’s excitation measure 

(“Aggregate Liquefaction Hazard” or “Htot”) was found by the summation of the product of each cell’s 

LSE by its area, calculated in figure 1. Additional excitation measures such as population expected to be 

exposed to liquefaction will also be considered in future work. 

 

 

 

 

 

Figure 1: Htot (LSE) values for 2001 Nisqually event projected 

into NAD 1983 (2011) StatePlane Washington North FIPS 4601 

(Meters). Htot values were calculated from this by the summation 

of each cell’s area multiplied with its LSE value: 

 

 

 

 

 

 

 

Damage states of each event were determined by defining total liquefaction loss thresholds in table 1. 

Damage estimates are calculated from information in earthquake reconnaissance reports wherever 

liquefaction or its effects are mentioned as a damage factor. Estimation methodology is described in detail 

in Chansky and Baise (in progress), primarily based on cost value estimates in HAZUS MH-2.1 Technical 

Manual. 12 earthquakes are recorded with liquefaction loss damages and 34 events are recorded without 

liquefaction loss. “Observed probability of failure” for each damage state is the number of events per bin 
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which exceed the damage state threshold divided by the total number of events in the bin, later shown in 

figure 2. Events are grouped to be included in the same bin with other events of similar excitation measures.  

 

 

Table 1: Damage state thresholds in 2018 USD for events with liquefaction loss estimates. 

 

The lower ends of excitation measure (Htot) bin boundaries were determined by the equation, 10^(n/3), 

where n represents the bin number. For example, Htot bins were split apart at values 10^0, 10^0.333, 

10^0.666, 10^1, 10^1.333, and so on until the maximum excitation measure is surpassed. The first bin’s 

lower boundary was adjusted from 1 to -0.01 to include events with Htot values of 0 and above. Htot values 

have a minimum possible value of 0 and a maximum possible value of the total affected by an earthquake, 

determined as area with peak ground acceleration values by the USGS. 

 

As previously mentioned, CDF curves are fit to the observed exceedance probability dataset using MLE. 

Two steps must be taken before MLE is conducted. First, the parameters used in the CDF are estimated. 

Their values do not matter much as the MLE process determines the most appropriate parameter values. 

However, if the estimated values are too far from the most appropriate values, occasionally the MLE process 

will go through too many trials to find appropriate values and will not succeed.  

 

These parameters are used to calculate dependent values in the CDF curve from independent excitation 

measures, seen in equation 29 in Porter (2020). Theta and Beta represent the lognormal CDF parameters, 

median and lognormal standard deviation, while !! represents the excitation measure at the center of each 

excitation measure bin. This results in "!, or theoretical probability of failure at excitation measures at the 

center of each excitation measure bin. 

 

 

 

Next, the probability was calculated that at the excitation measure representing the center of each Htot 
bin, we observed the number of failures, #! , among the number of events, $! , the theoretical failure 

probability, "!, using the binomial distribution in equation 30 of Porter (2020): 
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Finally, the product of the probabilities found at the center of each bin was maximized by allowing 

theta and beta to change using equation 31 of Porter (2020). In this case, MLE is a frequentist process to 

find quantities of interest (QOIs) theta and beta. 

 
 With parameters theta and beta describing the lognormal CDF shape for each damage state, the 

CDF, or theoretical probability of exceeding the damage state threshold, can be plotted along the x-axis 

representing excitation measures (figure 2). 

  

 
Figure 2: Probability of failure observations and resulting fragility functions using four liquefaction cost-

based damage states found in table 1. 

 
As there is some uncertainty associated with the Htot calculation, each event’s Htot values used in 

figure 1 were calculated as the medians of beta distributions, which were calculated and provided by Kate 

Allstadt of the USGS (Aug 2020, personal communication). In the next steps, a Monte Carlo simulation 

was used to assess uncertainty associated with the fragility function CDFs.  

 

During Monte Carlo simulation, 1 sample was drawn randomly from the beta distribution for each event 

and assigned as its excitation measure. The CDF parameters were recalculated and recorded. If the 

excitation measure for an event changed enough to be included in a different bin, the calculated CDF 

parameters were estimated slightly differently. This was repeated 1,000 times. Distributions of excitation 

measure draws for the 2018 Anchorage event are displayed in figures 3 and 4.  
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Figure 3: Histogram and probability distribution 

function of 1,000 draws from beta distribution of 

2018 Anchorage event’s aggregate liquefaction 

hazard. 

 

Figure 4: Box plot of 1,000 draws from beta 

distribution of 2018 Anchorage event’s aggregate 

liquefaction hazard. 

 

For iterations of sampling where CDF parameters were estimated slightly differently, the theoretical 

probability of exceeding damage state thresholds, or “failure” at each excitation measure was also slightly 

different. After 1,000 iterations, distributions of the theoretical probabilities were determined at each 

excitation measure (each x-value). For beginning of analysis of this data, probability distributions at a 

randomly selected excitation measure (292.40) were plotted in figures 5, 6, and 7. 

 

 
Figure 5: Histogram and 

distribution of resulting 1,000 

fragility function probability 

values for DS 1 at Htot = 

292.40 using 1,000 draws 

from each event’s beta 

distribution.  

Figure 6: Box plot of 

resulting 1,000 fragility 

function probability values 

for DS 1 at Htot = 292.40 

using 1,000 draws from each 

event’s beta distribution.  

Figure 7: Violin plot of 

resulting 1,000 fragility 

function probability values 

for DS 1 at Htot = 292.40 

using 1,000 draws from each 

event’s beta distribution.

  
 Using the probability distribution at each excitation measure, means and standard deviations were 

calculated. These were used to produce the plus or minus two standard deviation range of probabilities at 

each excitation measure, plotted in figure 8. These ranges contain approximately 95% of the 1,000 CDF 

values at each x-axis value for each damage state for a perfectly normal distribution. While the probability 

distribution is unlikely to be perfectly normal at each x-value, it is roughly normal as seen in figures such 

as 5, 6, and 7. Distributions on other areas of the x-axis produced similar figures. 
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Figure 8: Mean and prediction intervals of +/- 2 standard deviations from the mean of all 1,000 resulting 

values along the x-axis. 95% of observations fall within two standard deviations of the mean in a perfect 

normal distribution. 

 

  Using the standard confidence interval equation (sample mean plus or minus the confidence level 

value multiplied by the standard error), confidence intervals were established at each excitation measure 

value using the probability distribution at that value. Confidence levels for each damage state are plotted in 

figure 9. The lines represent 97.5% and 2.5% probability that the true population mean lies below their 

values, meaning a 95% probability that the true mean population parameter falls between the lines. 
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Figure 9: Confidence intervals of probability values along each fragility curve which have a 95% of 

containing the true probability population mean. The probability data did not have a very wide distribution 

at each excitation measure, resulting in a relatively narrow confidence interval. 

 

 Though excitation measure beta distributions allowed for a wide range of excitations selected for 

each event, most events remained in their original bins for most of the simulations. This resulted in not 

much change in a relatively narrow probability distribution and a very narrow confidence interval. The 

confidence intervals were so thin they were almost imperceptible. This implies a very high confidence on 

where the true mean population parameter falls. In other words, we can conclude almost exactly the 

theoretical probability of failure for each damage state along all excitation measure values. 

 

 For future work related to this project, these calculations will be repeated using other excitation 

measures such as estimated liquefaction population exposure. Another possibility is to incorporate new data 

in the form of new events and observe CDF parameter changes with a Bayesian process.  

 

 In this project, a thesis project was introduced which contained a liquefaction loss database for US 

events from 1964 – 2019 in addition to event-level fragility functions. The database was used to create 

damage state class thresholds by choosing round whole numbers, such as $10,000. Event-level fragility 
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functions were created by using MLE to find lognormal CDF parameters. Monte Carlo simulations were 

employed to establish excitation measure distributions for each event and probability distributions along 

the independent variable axis of excitation measures. Finally, confidence intervals were determined along 

this distribution and observed for each damage state. 

 

 

 

 

Notes on codes used: 

 

 A lot of code used in this project was originally written for a thesis project. All Jupyter Notebooks 

used are provided but much of the data organization and processing is less relevant so will not be 

emphasized. Points of interest to this project are (1) MLE process to determine CDF parameters, (2) Monte 

Carlo simulation and repeated MLE, (3) describe the data pulled from beta distributions, and (4) 

determining and plotting confidence intervals and data ranges. These four steps are described further in the 

ReadMe file for the following repository, with associated notebooks: 

 

https://github.com/chansk/UncertProjNotebooks 
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